A contribution to the development of sensitive and isotope-selective analytical methods based on sector-field ICP-mass spectrometry for supporting the development of Gen IV nuclear reactors
Date: 19/12/2014
Author: Tindemans, T.
Subject: A contribution to the development of sensitive and isotope-selective analytical methods based on sector-field ICP-mass spectrometry for supporting the development of Gen IV nuclear reactors
University: UGent
Promotor: Vanhaecke, F.
SCK CEN Mentor: Dobney, A.
The development, evaluation and application of a number of element- and isotope-selective analytical methods are described. This work contributes to the development of the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). However, the innovative nature of MYRRHA poses some important design challenges with regard to structural materials performance. The envisaged primary coolant is a liquid Lead-Bismuth Eutectic alloy (LBE) which is highly corrosive towards high-alloy steels, resulting in stringent requirements with regard to the selection of structural materials. The determination of trace elements that may affect a steel's mechanical characteristics, or may describe corrosion product uptake by the coolant is important. Since the elements of interest are only expected to be present at μg/g levels or below, a highly sensitive technique is required. Analytical methods for the multi-elemental trace analysis of LBE and high-alloy steels by using off-line chromatographic matrix separation prior to Double-focusing Sector-Field Inductively Coupled Plasma-Mass Spectrometry (ICP-SFMS) are described. The determination of isotope ratios by means of ICP-SFMS was also investigated, focusing on correction for dead time-induced count rate losses, correction for mass discrimination effects, and the attainable internal precision. This was performed for comparison with the existing TIMS isotopic analyses of lanthanides in nuclear fuels.